导数、函数是初高中衔接的重点内容,我们在初中阶段就开始有所接触。到了高中知识的深度不断地增加,真正能够完全掌握的同学少之又少!作为高考数学必考题型,导数、函数在整个高考数学的卷面占据了很大一部分分值,每一个同学想要数学成绩能够突破120分,基础知识必须掌握好!
导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面:
导数的常规问题
(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。
2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,考试技巧,应引起注意。
知识整合
1.导数概念的理解。
2.利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值。
复合函数的求导法则是微积分中的重点与难点内容。课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。
3.要能正确求导,必须做到以下两点:
(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。
(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。
函数的性质指数和对数公式
(1)定义域、值域、对应法则
(2)单调性
对于任意x1,x2∈D
若x1
若x1f(x2),称f(x)在D上是减函数
(3)奇偶性
对于函数f(x)的定义域内的任一x,若f(-x)=f(x),称f(x)是偶函数
若f(-x)=-f(x),称f(x)是奇函数
(4)周期性
对于函数f(x)的定义域内的任一x,若存在常数T,使得f(x+T)=f(x),则称f(x)是周期函数 (1)分数指数幂
正分数指数幂的意义是
负分数指数幂的意义是
(2)对数的性质和运算法则
loga(MN)=logaM+logaN
logaMn=nlogaM(n∈R)
指数函数 对数函数
(1)y=ax(a>0,a≠1)叫指数函数
(2)x∈R,y>0
图象经过(0,1)
a>1时,x>0,y>1;x<0,0
0
a> 1时,y=ax是增函数
0
(2)x>0,y∈R
图象经过(1,0)
a>1时,x>1,y>0;0
0
a>1时,y=logax是增函数
0
指数方程和对数方程
基本型
logaf(x)=b f(x)=ab(a>0,高中生物,a≠1)
同底型
logaf(x)=logag(x) f(x)=g(x)>0(a>0,a≠1)
换元型 f(ax)=0或f (logax)=0
教学点:1个 人气:472
教学点:1个 人气:442
教学点:1个 人气:418
教学点:1个 人气:379
关于我们 | 联系我们 | 咨询电话:4006-303-880
川ICP备07505283号
以上信息知识产权归“成都新学高考学校”所有,并对内容的真实性和合法性负责,如有侵权或投诉,请联系我们处理。