想要学好数学,要把握概念、法则、公式、定理之间存在的联系。数学是一门知识的连贯性和逻辑性都很强的学科,要经常查缺补漏,找到问题并及时解决之,努力做到发现一个问题及时解决一个问题。今天小编为大家分享的是七年级上册的知识点,适合即将上初一的同学们。
第一章:丰富的图形世界
1、几何图形
从实物中抽象出来的各种图形,包括立体图形和平面图形。
2、点、线、面、体
①几何图形的组成
点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
②点动成线,线动成面,面动成体。
3、生活中的立体图形
生活中的立体图形(按名称分)
柱:
①圆柱
②棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……
锥:
①圆锥
②棱锥
球
4、棱柱及其有关概念:
棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:
11种(经常考:考试形式:展开的图形能否围成正方体;正方体对面图案)
6、截一个正方体:
用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
7、三视图:
物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
1、有理数的分类
①正有理数
有理数 {②零
③负有理数
有理数{ ① 整数
②分数
2、相反数:
只有符号不同的两个数叫做互为相反数,零的相反数是零
3、数轴:
规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。
4、倒数:
如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。
5、绝对值:
在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。
若|a|=a,则a≥0;
若|a|=-a,则a≤0。
正数的绝对值是它本身;
负数的绝对值是它的相反数;
0的绝对值是0。
互为相反数的两个数的绝对值相等。
6、有理数比较大小:
正数大于0,负数小于0,正数大于负数;
数轴上的两个点所表示的数,右边的总比左边的大;
两个负数,绝对值大的反而小。
7、有理数的运算:
①五种运算:加、减、乘、除、乘方
多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。
有理数加法法则:
同号两数相加,取相同的符号,并把绝对值相加。
异号两数相加,绝对值值相等时和为0;
绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
一个数同0相加,仍得这个数。
互为相反数的两个数相加和为0。
有理数减法法则:
减去一个数,等于加上这个数的相反数!
有理数乘法法则:
两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数与0相乘,积仍为0。
有理数除法法则:
两个有理数相除,同号得正,异号得负,并把绝对值相除。
0除以任何非0的数都得0。
注意:0不能作除数。
有理数的乘方:求n个相同因数a的积的运算叫做乘方。
正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数。
②有理数的运算顺序
先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的。
③运算律(5种)
加法交换律
加法结合律
乘法交换律
乘法结合律
乘法对加法的分配律
8、科学记数法
一般地,一个大于10的数可以表示成a×
10n的形式,其中1≦n<10,n是正整数,这种记数方法叫做科学记数法。(n=整数位数-1)
教学点:3个 人气:1192
教学点:3个 人气:1004
教学点:3个 人气:802
教学点:3个 人气:763
教学点:3个 人气:689
教学点:3个 人气:572
关于我们 | 联系我们 | 咨询电话:4006-303-880
川ICP备07505283号
以上信息知识产权归“新乡励学个性化培训学校”所有,并对内容的真实性和合法性负责,如有侵权或投诉,请联系我们处理。