高考中,选择题占分比例相当高,12小题60分,是考生夺分的一大版块。考生能否迅速、准确、全面、简捷地解好选择题,对能否进入最佳状态,以至于整个考试的成败起着举足轻重的作用,下面一起来看看高考数学选择题应该怎么做才能更好的得分。
解答选择题的基本策略
选择题主要考查基础知识的理解、基本技能的熟练、基本计算的准确、基本方法的运用、考虑问题的严谨、解题速度的快捷等方面。
解答选择题的基本策略是:要充分利用题设和选择支两方面提供的信息作出判断。一般说来,能定性判断的,就不再使用复杂的定量计算;能使用特殊值判断的,就不必采用常规解法;能使用间接法解的,就不必采用直接解;对于明显可以否定的选择应及早排除,以缩小选择的范围;对于具有多种解题思路的,宜选最简解法等。
解题时应仔细审题、深入分析、正确推演、谨防疏漏;初选后认真检验,确保准确。
1、极限法
当一个变量无限接近一个定量,则变量可看作此定量。对于某些选择题,若能恰当运用极限法,则往往可使过程简单明快。
例题:对任意θ∈(0,π/2)都有( )
A sin(sinθ)<cosθ<cos(cosθ)
B sin(sinθ)>cosθ>cos(cosθ)
C sin(cosθ)<cos(sinθ)<cosθ
D sin(cosθ)<cosθ<cos(sinθ)
解析:当θ→0时,sin(sinθ)→0,cosθ→1,cos(cosθ)→cos1,故排除A与B;当θ→π/2时,cos(sinθ)→cos1,cosθ→0,故排除C,只能选D。
2、排除法、代入法
当从正面解答不能很快得出答案或者确定答案是否正确时,可以通过排除法,排除其他选项,得到正确答案。排除法可以与代入法相互结合,将4个选项的答案,逐一带入到题目中验证答案。
例题:已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围为:
A、(2,+∞) B、(-∞,-2) C、(1,+∞) D、(-∞,-1)
解析:取a=3,f(x)=3x3-3x2+1,不合题意,可以排除A与C;取a=-4/3,f(x)=-4x3/3-3x2+1,不合题意,可以排除D;故只能选B
3、特例法
有些选择题涉及的数学问题具有一般性,这类选择题要严格推证比较困难,此时不妨从一般性问题转化到特殊性问题上来,通过取适合条件的特殊值、特殊图形、特殊位置等进行分析,往往能简缩思维过程、降低难度而迅速得解。
例题:2016年高考全国卷Ⅱ理数第12题
已知函数f(x)(x∈R)满足f(-x)=2-f(x),若函数y=x+1/x与y=f(x)图像焦点为为(x1,y1),(x2,y2),…,(xm,ym),则∑mi=1(xi+yi)=( )
A、0 B、m C、2m D、4m
解析:由f(-x)=2-f(x)得,f(x)关于(0,1)对称,故可取符合题意的特殊函数f(x)=x+1,联立y=x+1,y=x+1/x,解得交点为(-1,0)和(1,2),所以∑2i=1(xi+yi)=(x1+y1)+(x2+y2)=(-1+0)+(1+2)=2,此m=2,只有选项B符合题意。
教学点:2个 人气:93
教学点:2个 人气:88
教学点:2个 人气:81
教学点:2个 人气:80
教学点:2个 人气:78
教学点:2个 人气:67