高中数学解题方法技巧汇总

文章导语

数学题速度慢,不仅会拉长平时作业时间,减少自主学习时间,更会在考试中影响整体做题速度,很可能会做的题也来不及解答。下面分享几点高中数学解题方法技巧汇总。

1解决绝对值问题

主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。具体转化方法有:
①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。

2因式分解

根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:

提取公因式

选择用公式

十字相乘法

分组分解法

拆项添项法

3.换元法

解某些复杂的特型方程要用到“换元法”。换元法解方程的一般步骤是:
设元→换元→解元→还元

4.待定系数法

待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。其解题步骤是:              
①设 ②列 ③解 ④写

5.复杂代数等式

复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:                   
(-----)(----)=0     两种情况为或型
②配成平方型: 
(----)2+(----)2=0     两种情况为且型

6.数学中两个最伟大的解题思路

(1)求值的思路列欲求值字母的方程或方程组
(2)求取值范围的思路列欲求范围字母的不等式或不等式组

10代数式求值

方法有:
(1)直接代入法       
(2)化简代入法        
(3)适当变形法(和积代入法)
注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。

7.解含参方程

方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。解含参方程一般要用‘分类讨论法’,其原则是:
(1)按照类型求解
(2)根据需要讨论    
(3)分类写出结论

12恒相等成立的有用条件

(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。
(2)ax2+bx+c=0对于任意x都成立关于x的方程ax2+bx+c=0有无数解a=0、b=0、c=0。

8.图像法

讨论函数性质的重要方法是图像法——看图像、得性质。 
定义域  图像在X轴上对应的部分
值   域   图像在Y轴上对应的部分
单调性
从左向右看,连续上升的一段在X轴上对应的区间是增区间;从左向右看,连续下降的一段在X轴上对应的区间是减区间。
最   值  图像最高点处有最大值,图像最低点处有最小值
奇偶性  关于Y轴对称是偶函数,关于原点对称是奇函数

9.函数、方程、不等式简的重要关系

>

方程的根

函数图像与x轴交点横坐标

不等式解集端点

10.一元二次方程的解法

一元二次不等式可以用因式分解转化为二元一次不等式组去解,但比较复杂;它的简便的实用解法是根据“三个二次”间的关系,利用二次函数的图像去解。具体步骤如下:

二次化为正》判别且求根》画出示意图》解集横轴中

11.一元二次方程根的讨论

一元二次方程根的符号问题或m型问题可以利用根的判别式和根与系数的关系来解决,但根的一般问题、特别是区间根的问题要根据“三个二次”间的关系,利用二次函数的图像来解决。“图像法”解决一元二次方程根的问题的一般思路是:

题意》二次函数图像》不等式组

不等式组包括:a的符号;△的情况;对称轴的位置;区间端点函数值的符号。

12.基本函数在区间上的值域

我们学过的一次函数、反比例函数、二次函数等有名称的函数是基本函数。基本函数求值域或最值有两种情况:
(1)定义域没有特别限制时---记忆法或结论法;
(2)定义域有特别限制时---图像截断法,一般思路是:

画出图像》截出一断》得出结论

13.最值型应用题的解法

应用题中,涉及“一个变量取什么值时另一个变量取得最大值或最小值”的问题是最值型应用题。解决最值型应用题的基本思路是函数思想法,其解题步骤是:

设变量》列函数》求最值》写结论

14.穿线法

穿线法是解高次不等式和分式不等式的最好方法。其一般思路是:

首项化正》求根标根》右上起穿》奇穿偶回

注意:①高次不等式首先要用移项和因式分解的方法化为“左边乘积、右边是零”的形式。②分式不等式一般不能用两边都乘去分母的方法来解,要通过移项、通分合并、因式分解的方法化为“商零式”,用穿线法解。

 

更多培训课程,学习资讯,课程优惠,课程开班,学校地址等学校信息,请进入 重庆学大教育 重庆学大教育 你也可以留下你的联系方式,让课程老师跟你详细解答 4006-303-880 在线咨询
预约申请试听课程

只要一个电话,我们免费为您回电

推荐课程
学习资料

关于我们 | 联系我们 | 咨询电话:4006-303-880

汇上优课 招生合作 版权/投诉

川ICP备07505283号

 以上信息知识产权归“重庆学大教育”所有,并对内容的真实性和合法性负责,如有侵权或投诉,请联系我们处理。

汇上优课 重庆培训 重庆学大教育 学习资料 高中数学解题方法技巧汇总

首页

在线咨询

拨打电话

在线留言

还没有找到合适的课程?赶快告诉课程顾问,让我们顾问马上联系您! 靠谱的培训课程,省时又省力!

还没有找到合适的课程?赶快告诉课程顾问,让我们顾问马上联系您! 靠谱的培训课程,省时又省力!