除了课本上的常规公式之外,掌握一些必备的秒杀型公式能够帮你在考试的时候节省大量的时间。这次给大家分享的就是高中数学常用的秒杀公式,掌握这些公式会让你的数学如鱼得水!
1、适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。注上述公式适合一切圆锥曲线。如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。
2、函数的周期性问题(记忆三个):
(1)若f(x)=-f(x+k),则T=2k;
(2)若f(x)=m/(x+k)(m不为0),则T=2k;
(3)若f(x)=f(x+k)+f(x-k),则T=6k。注意点:a.周期函数,
周期必无限b.周期函数未必存在最小周期,如:常数函数。c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。
3、关于对称问题(无数人搞不懂的问题)总结如下:
(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2
(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称
(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称
4、函数奇偶性:
(1)对于属于R上的奇函数有f(0)=0
(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项
(3)奇偶性作用不大,一般用于选择填空
5、数列爆强定律:
1.等差数列中:S奇=na中,例如S13=13a7
2.等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差
3.等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立
4.等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q
6、函数详解补充:
(1)复合函数奇偶性:内偶则偶,内奇同外
(2)复合函数单调性:同增异减
(3)重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。另外,必有唯一一条过该中心的直线与两旁相切。
7、常用数列bn=n×(2²n)求和Sn=(n-1)×(2²(n+1))+2记忆方法
前面减去一个1,后面加一个,再整体加一个2
8、适用于标准方程(焦点在x轴)爆强公式
k椭=-{(b²)xo}/{(a²)yo}k双={(b²)xo}/{(a²)yo}k抛=p/yo
注:(xo,yo)均为直线过圆锥曲线所截段的中点。
9、隔项相消:
对于Sn=1/(1×3)+1/(2×4)+1/(3×5)+…+1/[n(n+2)]=1/2[1+1/2-1/(n+1)-1/(n+2)]
注:隔项相加保留四项,即首两项,尾两项。自己把式子写在草稿纸上,那样看起来会很清爽以及整洁!
10、求f(x)=∣x-1∣+∣x-2∣+∣x-3∣+…+∣x-n∣(n为正整数)的最小值。
答案为:当n为奇数,最小值为(n²-1)/4,在x=(n+1)/2时取到;当n为偶数时,最小值为n²/4,在x=n/2或n/2+1时取到。
11、椭圆中焦点三角形面积公式
S=b²tan(A/2)在双曲线中:S=b²/tan(A/2)说明:适用于焦点在x轴,且标准的圆锥曲线。A为两焦半径夹角。
12、空间向量三公式解决所有题目
cosA=|{向量a.向量b}/[向量a的模×向量b的模]|
一:A为线线夹角
二:A为线面夹角(但是公式中cos换成sin)
三:A为面面夹角注:以上角范围均为[0,派/2]
13、切线方程记忆方法
写成对称形式,换一个x,换一个y。
举例说明:对于y²=2px可以写成y×y=px+px再把(xo,yo)带入其中一个得:y×yo=pxo+px
14、对于y²=2px,过焦点的互相垂直的两弦AB、CD,它们的和最小为8p。
定理的证明:对于y²=2px,设过焦点的弦倾斜角为A.那么弦长可表示为2p/〔(sinA)²〕,所以与之垂直的弦长为2p/[(cosA)²],所以求和再据三角知识可知。(题目的意思就是弦AB过焦点,CD过焦点,且AB垂直于CD)
15、关于解决证明含ln的不等式的一种思路:
举例说明:证明1+1/2+1/3+…+1/n>ln(n+1)把左边看成是1/n求和,右边看成是Sn。
解:令an=1/n,令Sn=ln(n+1),则bn=ln(n+1)-lnn,那么只需证an>bn即可,根据定积分知识画出y=1/x的图。an=1×1/n=矩形面积>曲线下面积=bn。当然前面要证明1>ln2。注:仅供有能力的童鞋参考!!另外对于这种方法可以推广,就是把左边、右边看成是数列求和,证面积大小即可。说明:前提是含ln。
16、离心率公式:
e=sinA/(sinM+sinN)
注:P为椭圆上一点,其中A为角F1PF2,两腰角为M,N
17、
和差化积
sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]
sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]
cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]
cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]
积化和差
sinαsinβ=[cos(α-β)-cos(α+β)]/2
cosαcosβ=[cos(α+β)+cos(α-β)]/2
sinαcosβ=[sin(α+β)+sin(α-β)]/2
cosαsinβ=[sin(α+β)-sin(α-β)]/2
18、几个数学易错点:高中数学解题公式
1.f`(x)<0是函数在定义域内单调递减的充分不必要条件
2.在研究函数奇偶性时,忽略最开始的也是最重要的一步:考虑定义域是否关于原点对称!
3.不等式的运用过程中,千万要考虑"="号是否取到!
4.研究数列问题不考虑分项,就是说有时第一项并不符合通项公式,所以应当极度注意:数列问题一定要考虑是否需要分项!
教学点:24个 人气:1872
教学点:24个 人气:1015
教学点:24个 人气:546
教学点:24个 人气:424
教学点:24个 人气:359
教学点:24个 人气:223
关于我们 | 联系我们 | 咨询电话:18382425323
川ICP备07505283号
以上信息知识产权归“广州新东方素质成长中心”所有,并对内容的真实性和合法性负责,如有侵权或投诉,请联系我们处理。